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EFFECT OF INTERPHASE TANGENTIAL FORCES ON FLOW DEVELOPMENT 

IN A WEAKLY CONDUCTIVE LIQUID 

A. I. Zhakin UDC 533 

Coulomb forces induce motion in a weakly conductive polarizable liquid by means of volume 
forces [1-5] and tangential surface stresses [2, 6]. While the former type of flow has a 
threshold character [1-5], the latter can develop in a vanishingly small electric field upon 
motion of surface charge over the free surface of the liquid [6]. The surface charge accumu- 
lation time on the free surface is of the order of magnitude of the free charge relaxation 
time t e = e/o [7]. If the problem characteristic time to satisfies the inequality to < te~ 
then surface charge can be neglected and the major role will be played by polarization forces 
(for example, in problems involving stabilization of the free surface of a dielectric liquid 
by an electric field [2, 8, 9]). For to ~ t e Coulomb surface forces cannot be ignored, and 
their consideration leads to the possibility of electroconvective flows. 

In the present study the basic principles of thresholdless electroconvection will be 
considered, using the example of flow of a weakly conductive polarizable liquid under the action 
of surface forces produced by a special electrode geometry. 

i. Formulation of the Problem. We will consider two incompressible viscous weakly 
conductive polarizable immiscible liquids, situated between two infinite horizontal electrodes 
and separated by a free surface S. We introduce a cartesian coordinate system as shown in 
Figs. I, 2, and denote by ~i the region occupied by liquids, with $I = (-~ < x < ~, z = hl + 
a cos ~x) being the upper curved electrode, and $2 = (--~ < x < ~, z =--h2), the lower planar 
electrode. Here and below, the indices 1 and 2 refer to quantities defined in the regions 

Liquid motion will be described by the electrohydrodynamics equations 

Oi(Ovi/Ot + (v iv )v i )  = - - V P l  + NiAvi + q~Ei - -odez ,  

div  v~ ~ O, div  e~Ei = 4nq~, Ei = - - V ~ i ,  (I.i) 

Oq/Ot + div j~ = 0 on Qi, 

where 0i is the density; Pi is total pressure [8]: J~ = ~iEi + qlvi is current density; qi, ~ 
are constant dynamic viscosity and conductivity coefficients; qi is volume charge density; ~i 
is electric field potential; e i is dielectric permittivity; g is acceleration of gravity 
(i = i, 2). 

The boundary conditions for Eq. (i.i) follow from the conditions of adhesion, specifi- 
cation of potential on the electrodes, and kinematic, dynamic, and e!ectrodynamic conditions 
on the free surface. They have the form [6, 8] 

S l : v l  = 0 ,  qh = U = c o n s t ;  S ~ : v ~  = 0 ,  (p~-----O; 

S : <v> = O, O//Ot = v x ' n l v / W L  w~ = % ,  

<eE.n> = 4~qs , Oqs/Ot + divs i  ~ H q s v l . n  + <in)  = O, 
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<~Qh>nir -~- q s E ,  = O, i = ~IsE~ + qsv, ,  (1.2) 

where div s is the surface divergence; i is the surface current; Os is the surface conductivity 
coefficient; E~, v~ are tangential components of the vectors E, v on the surface S; n =(n~), 
~=(~) are normal and tangential unit vectors on S; H is the mean curvature of S; a is a 
constant surface tension coefficient; qs is the surface charge density; Tik = eE~E~/4~-- 
eE~/8~ is the Maxwell stress tensor without striction components [8]; ~ik = ~(3vi/3Xk + 
3Vk/~X i) is the viscous stress tensor; <F> = Ft -- F= is the change in a certain quantity F 
upon transition through the surface S; z = f (t, x, y) is the equation of the surface S. 

2. Solution of the Stationary Problem. In order to find the most significant features 
of electroconvection, we will assume that the curvature of the upper electrode is low, i.e., 
assume that the characteristic radius of curvature is significantly greater than the thick- 
nesses hi, h= and the inflection amplitude a: 

1~ ,-., a~(o ~ ~ ahlo) ~ ~ ah~o) ~ << ~. 

In this case, the problem of Eqs. (I.i), (1o2) can be solved by perturbation theory methods, 
using the representation 

v~ = v i i  + v ~  + . . . ,  Pi = P~o + P ~  + P ~  + . . . ,  
w~ = ~io + ~ a  + ~ + . . . ,  I = Ii + $~ + . . . .  

where the terms v~,p~h , ~k,f~(i = i, 2) are of k-th order smallness in ~, and ~i, Pio is the so- 
lution describing the field potential and pressure distributions with a planar upper electrode. 

We find 

�9 ~o ---- a i l z  + ai2, P~o = e~ - -  p~gz, a~ ,  c~ = cons t ,  

a ~  = . J ] / ~ , ,  a~t = m v / ' r  "~ ~ ,,~h~ + (,~h~ (~ = l ,  2).  

For the first approximation we obtain the problem 

- - V P t l  + ~hAv~t = 0, d iv  v i i  = 0, hcPil -=- 0 on D i ,  
v . = ( v ~ a ,  v . a ,  0) ( i = l ,  2), 

D t = ( - -0 0  < x  < o o ,  O ~ g ~  hi) , D 2 = ( - - c o  < x  < 0 0 ,  
- - h ,  ~< z ~< 0); 

for z = h 1 V I I  = 0 ,  (~11 ~ "  - - a a u  cos ox ,  
for z - -  - -hz  vzl = 0, q~l = 0, 

for Z ---- 0 VZl 1 ----- /)z21 = 0 ,  V.cU = /)x21, Wl i  - -  q)21 ~ -  (ati  - - a r t ) f1 ,  

0 2 OVXl 1 ,.,, 

�9 ,. a I d 

(~tv.~. --  'hV~..O qso ~ (%1 + a,,tfO = O, 

(2.1) 

Here qs o = --(elo= -- e2ot)U/4~y, and the prime denotes differentiation with respect to x. 

Transforming to the flow function 

v~i =--@/0z, ~i = a,i/ax (i = 1,2) 

and eliminating the pressure, from Eq. (2.1) we obtain 

A2r = 0 ,  A % l  = 0 o n D ~  (i = 1, 2); (2.2) 

for Z = h i ~i ~- Ai ,  O~2i/Oz = O, ~ii = - - a a l l  cos cox; (2.3) 

for z = --h.  2 t~2 = A1 ,  O@~/Oz = O, r = O; (2.4) 
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for z = 0 ~', =-- ~ = A , ,  a ~ , / a z  = ar r  - ~2~ = 

= (~1 - an)A; ( 2 . 5 )  

(~1 T - -  02 T -~- O's - -  (q)l]. "~- a l l / l )  "-[- qSO ~ 1~2 ----- 0 ;  ax 2 (2.6) 

" " ( 02 o 0~ '~ 

i c3 a 
( 2 0 7 )  

O u 0 
o-7 (n ,% - u~%) + qso ~ (q~21 + a2,f , )  = O, ( 2 . 8 )  

where A, = const. 

Expanding the solution in the form 

i 
q)n -- shcohl (-- aan sh o~z -k A3G, (z)) cos o)x, 

r = A4"G~(z!c~ f ,  = A2c~176 
G420 

q h = A ~  k o)h, (h, - -  z) --ff-~-) smo)x-~  A~, 

we find that Eq. (2.2), 
satisfied identically, 
inhomogeneous system of fifth order equations 
2, 3, . . . ,  6): 

q~2 --  As \ ~o;h (h~ -~- z) V2 ~ ) sin cox - -  A1, 

Gl(z) ---- sh o(h,  - -  z), G2(z) = sh o (h  2 A- z ) ,  

6~o = a f ro) ,  a~o = G~(o), 

conditions (2.3), (2.4), and the first condition of Eq. (2.5) are 
while the remaining condition at z = 0 gives the following linear 

for definition of the coefficients A i (i = 

A3 - -  A 4 -  (a21 - -  a n )  A2 = 0, 

i(as(o q- o 1 c th  (oh,) A 3 ~ a 2 c th  o)h 2 �9 Aa + asan(oA 2 - -  

- -  %0 \cob z G:o ~ A6 -- G,o , 

/ oh 1 o)h o "~ 

2 
(o A q- ~ - - ( s , a n c t h ( ~  a ~- s~a2, cth~ -- aanq~ 

- 4~Glo 

) \ ~'~,2 G~_oi ) A ~ - ~ - q s ' ( A ~ a 2 1 A 2 ) = O "  
/ ch o),q t A~-~- 2~1., ( c ~  ~~ 

2~h \ ' ~ -~ ,  Glo 

(2,9) 

~ ,2 

,L__O0 O0 
-~h 

Fig. 1 

/ 

Fig. 2 
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This system of equations has a solution when and only when its determinant is nonzero. 
In the future we will consider the physical meaning of a zero determinant in greater detail, 
but meanwhile we will assume that it is nonzero. In this case the solution of system (2.9) 
has the form 

.:~,~ a(orJ21]2 ~lctl ~ alrY~% 
- = 4n~,201o -- D (7 - -  01h~ + o:th), 

b 
A 4 = - -  a,2xAo ~ Ao, A a = Aa @ (a21 -- all ) A.,, 

G ~  0 o - -  r 
b ---- rll (sh 2(ot h -- 2m/h) + ~]z (sh 2oh., -- 2mh2), 

G~o -- J'h~ ( 2. I0) 

. - -20 - -  60 '~2 A 6  "As hjG1 ~ (72 :~2 
h',a'20 a~O - -  (o~ 1 

D = - -  g )  - -  C t h  o)h  + - -  

- -  0 1 0 "  2 (cth o)h 1 - / c t h  o)h2) ax] mU2/4u? 2, 
a 1 = (eft2 cth mhl + e~ol cth (oh.,) b -I- 2(0 ~ (et~., -- %~)  X 

2 2 2 2 ] 
- - -  -- ~loh,~ , X ,-2 . . %  '2 - ~ 
cr lO - -  ~ n 1 

a2=(asm + e 1 cth mh~ + a,, ct]l mh,~) b + q~o (slg mh, - -  r 

3. Analysis of the Solution. From the solution obtained it is evident that electro- 
convective motion is absent (As = A~ = 0) in the following cases: i) if the conductivity of 
even one liquid is equal to zero (oi = 0 or o2 = 0); 2) if surface charge is absent from the 
free surface: e,o2 -- e2o1 = 0; 3) if the surface conductivity o S is sufficiently high: 
o S *~; 4) if either one of the liquids is an ideal conductor (o1 = ~, o2 = const, or 02 = 
~, ~1 = const). 

Development of electroconvective cells is explained by the fact that in motion of surface 
charge along the tangential field component on the free surface there arise tangential 
stresses 

/ /Or i 0%'~ ~ 

which lead to flow development. Such a type of motion has been observed in experiments with 
plane electrodes, one of which was constructed in a manner such that the potential varied 
periodically along the x axis [6]. 

Thus, motion of surface charge along the free surface can be one cause of thresholdfree 
electroconvection. From this it is clear that the phenomenon must be considered in analyzing 
electrohydrodynamic motions in weakly conductive liquids with a free surface located in 
inhomogeneous electric fields, for example, in a system of coaxial cylindrical electrodes [i0] 
or a system with edge-plane type electrodes [4]. 

It is obvious that with sufficiently high voltage on the electrodes the expression for D, 
which coincides to the accuracy of a nonzero cofactor with the determinai:t of system (2.9), 
tends to zero. The solution obtained then increases without limit, which implies instability 
of the surface S. In fact, in view of the small curvature of the upper electrode it may be 
considered planar in a first approximation. If we consider the stability of the surface S 
with a planar upper electrode with respect to normal perturbations (x-dependence proportional 
to exp(ikx), where k is a wave number related to the length of the perturbation by the 
expression ~ = 2~/k), then the critical voltage at which the surface S becomes unstable is 
determined by the condition of equality to zero of the expression for D = D(m, U, o~, 02, ...), 
with the quantity m replaced by k. Thus as soon as the voltage U reaches the value U(k) de- 
fined from the equation 

D(m, U, 01, ~2 . . . .  )]~o=h = 0, 
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and the perturbation wavelength coincides with the inflection period of the upper electrode 
= k, a unique "resonance" develops and the surface S loses stability, We note that the 

surface can also lose stability earlier, since the critical voltage U,, defined as 

U ,  = rain U(k), 
h>O 

may be less than U(k) Ik=~. 

In the voltage range U < U,, where the approximation considered here is valid, the sign 
of D is positive (D > O~ The form of the free surface will then be determined by the sign 
of the expression B = o~al -- exoaa2. For example if B > 0 (B < 0), the depressions (pro- 
jections) of the surface will be located opposite the projections of the upper electrode. 
The direction of rotation in the electroconvective cells will then be determined only by the 
signs of the expressions e:~ -- ezg,, sx ~ -- 

We will consider some limiting cases, assuming for simplicity that the layer thicknesses 
are identical: h~ = h= = h. 

Let the conductivity of the lower layer of liquid be significantly greater than that of 
the upper layer: ~2>>~x. Such is the case, for'example, with benzene and water. Maintaining 
terms up to first order smallness in the small parameter oz/~= in the expressions for the 
coefficients, we will have 

a~81E2 ao~I~IE~D + 
A~ = 4= shmhD_ '  A, = a~D_ ' 

D •  = ~ 2  __ <p>g _____ e ~  e t h  ~hE~/4n, 

Aa = A~, Aa = --EA~,  A~ = O(~/a~), 

where 

a~ = ((~sO) ~- o'2 c t h  coh)(sh 2o)h - -  2~oh)(~h + ~h) -[- e~E~(sh 2 (oh - -  ~)2h2)/t6n2; 

E----U/h; 0(~i/~) istheord~ ~mbol. 
The critical voltage for the present case is given by 

E ,  = U, /h  ~ min  [ 4n (ak2--<P> g) ] 1/~ 
k>o ~lk cth kh " 

For E < E, the coefficient A2 is negative, whence it follows that the form of the free 
surface is "out of phase" with the form of the upper electrode; i.e., the projections of the 
free surface are located opposite the projections of the upper electrode (see Fig. i). Such 
surface form can be explained by the fact that beneath the projections of the curved elec- 
trode on the free surface there are maxima in surface charge concentration, so that these 
segments are attracted more strongly than the segments beneath the depressions of the curved 
electrode. The character of the flow is then such that at the points where the free surface 
has projections (cos mx < O) the lower liquid flows downward and the upper liquid upward, 
while at the surface depressions (cos mx > O) the opposite is true, the lower liquid flowing 
upward, and the upper downward (see Fig. I). 

In the other limiting case ~,>>~2 we have 

where 

A~ ---- - -  

A2 _ aoe2(~uE2 b c t h  oh ~ 2 o 2 h  2 (111 - -  TI~ ) 

4~ sh r 

a 

., A 5 = A~, 

(o~o 2 - -  <p> g - -  ezo cth r a~ ' 

A 3 - ~ A a + E A ~ ,  A 4 ~ - E A ~ - -  

b = (r h + rl.,.)(sh 2r - -  2o~h); 

a~ = (~rs~ -1- ~1 c t h  r b + s~E 2 (sh  2 coh - -  o~2h2)/16~ ~, 

bA~ 
oh sh oh ' 
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and in this case at bcoth ~h--2~z(N,--~,)> 0 the coefficient A= is positive, so that we see 
a pattern opposite to that discussed above: the free surface is "in phase" with the curved 
electrode, and rotation in the electroconvective cells occurs in the opposite direction (Fig. 
2). 

We will now consider peculiarities of electroconvection at various limiting values of 
the liquid viscosities. 

For vanishingiy small n,, ~= the balance of forces, Eq. (3.1), would appear to lead to 
an abrupt increase in flow velocity. However at n~, ~ § 0 the coefficients of the solutions 
are finite and have the form of Eq. (2.10), where we must take 

= O , . ,  = - -  b = O. 

Thus, for small viscosity coefficients D,, ~$ the stationary velocity field is indepen- 
dent of liquid viscosity. This is explained by the fact that as D~, q= § 0 the tangential 
field component E~ in Eqo (3.1) also tends to zero, maintaining the same order of smallness 
as the right side of Eq. (3.1). 

In the case where either of the liquids has a sufficiently high viscosity, the flow 
velocity will decrease in inverse proportion to the dynamic viscosity coefficient, since as 
ql ~ ~ (n2 § ~) the coefficients A~, A~ decrease as ~x-x (n~-:). 

The solution takes on its simplest form when the surface tension or force of gravity is 
so high that the surface is undeformed, i.eo, in the expressions for D in Eq. (2.10) the 
terms containing the parameters a, g, are the major ones. In this case we have 

bA o . a (800.1 -- 810"..$) OI0.2Oh2GIOU$ 
A s = 0  , A ~  = A 4  ----- ohza~o ' A6 = - ~ , 

% (*lh~ + %hx)~a~o 

w h e r e b  , a a  a r e  d e f i n e d b y E q .  (2.10)and A~ i s  e x p r e s s e d  i n t e r m s  o f  A6 by  Eq.  ( 2 . 9 ) ~  Hence  
i t  i s  e v i d e n t  t h a t  t h e  d i r e c t i o n  o f  r o t a t i o n  i n  t h e  e l e c t r o c o n v e c t i v e  c e l l s  i s  d e t e r m i n e d  
solely by the sign of the expression e20~ -- exoa, i.e., by the sign of the surface charge. 
We will express A6 as a function of the conductivities a,, ~2 in explicit form, assuming for 
simplicity that o S = 0, ha = h2 = h; 

,4~ = & (%, %) = q % %  (~.;h - 81%) , 
(% + 0.,~/' [(% + %) % + %] 

q = acoU~/h ,  c~ = (rll + rh) (sh 2~h - -  2~h) c th  ~h,  c 8 ----- q~0 (s h2coh-(0"h~) �9 

If we study this function at its extremum, we find that the flow velocity will be maxi- 
mal for the following relationship between the conductivities: 

(3.2) 

The double sign on the right side of this equation corresponds to the different rotation 
directions in the electromagnetic cells. We will consider ~2 fixed and study the dependence 
of A6 on q:. As is evident from Fig. 3, at small ~ the flow velocity is also small. With 
increase in ~ A6 < 0, and the velocity increases and reaches a maximum value at ~ = o_, 
which is defined by Eq. (3.2) with a minus sign. With further increase in ~i the flow 
velocity falls and goes to zero at ~i = oo ~ E~2/e2, i.e., at zero surface charge. Further 
growth in oz leads to the liquid again going into motion, but now with rotation in the cells 

I 

Fig. 3 
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in the opposite direction (A~ > 0), and the rotation velocity reaches a maximum at ~ = ~+~ 
defined by Eq. (3.2) with the plus sign. It is obvious that similar principles will hold 
with variation of ~2 and fixed o~. 
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PROPAGATION OF A CLEARING WAVE IN AN INHOMOGENEOUS COMBUSTIBLE AEROSOL 

No P. Bashkirova and A. M. Sagalakov UDC 551o573 

The propagation of intense optical radiation in an aerosol is accompanied by clearing 
which develops due to the vaporization or (and) combustion of the aerosol particles. Induced 
clearing in fogs and clouds developing due to the vaporization of water drops in a powerful 
optical field has been the most fully studied up to now [1-4]. A decrease in the size of 
water particles leads to weakening of absorption, as a result of which clearing of the aerosol 
occurs. Peculiarities of the dynamics of clearing are due to the fact that the rate of parti- 
cle combustion is not a unique function of the radiation intensity~ The rate of particle 
combustion at a given time depends on the radiation intensity at previous times and, of course, 
depends on the character and type of chemical reactions taking place in the process of com- 
bustion. The dynamics of clearing in an inhomogeneous, monodisperse, combustible aerosol is 
analyzed in t1~e present report. 

I. It is known that the rate of heterogeneous combustion K S of a solid particle at a 
temperature T below the ignition temperature To can be taken as equal to zero (To ~ 1500~ for 
carbon particies with a size of i-i0 ~m). At T > To the quantity K S is different from zero 
and, generally speaking, depends on T. If the radiation intensity is relatively low, then 
after ignition of a particle the heat released as a result of the chemical reaction of com- 
bustion will make the main positive contribution to its heat balance. Therefore, after the 
ignition of a particle the combustion rate can be considered as practically independent of 
the radiation intensity~ In this case radiation plays the role of the initiator of combustion| 

An elementary estimate of the time of heating a carbon particle with a characteristic 
size of ~i ~m to the ignition temperature determines a value of ~i0 -5 sec. This time is much 
less than the other characteristic times of the given problem (for example, the characteristic 
time of burnup of a particle of the same size is ~i0 -3 sec). Therefore, one can assume that 
a particle ignites practically instantly when a certain radiation intensity Io is reached at 
the given point. From the heat-balance equation we get the estimate 
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